OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
EXAMPLE
G.f. = 1 + x - 2*x^2 - 2*x^3 + x^5 + 2*x^6 - x^9 - 4*x^10 + x^12 + 6*x^14 + ...
G.f. = q^-3 + q^-1 - 2*q - 2*q^3 + q^7 + 2*q^9 - q^15 - 4*q^17 + q^21 + 6*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^2, x^4]^2 QPochhammer[ x^3, x^6] QPochhammer[ x^4, x^8] QPochhammer[-x^6, x^12]^2 QPochhammer[ x^12, x^24], {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^12, x^24] QPochhammer[ x^24, x^48] + x QPochhammer[ -x^4, x^8] QPochhammer[ x^8, x^16] - 2 x^2 QPochhammer[ x^16] / QPochhammer[ -x^4] - 2 x^3 QPochhammer[ x^48] / QPochhammer[ -x^12], {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A)^5 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 * eta(x^8 + A) * eta(x^24 + A)^3), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 11 2007
STATUS
approved