OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
FORMULA
a(n) = (1/2)*(4^n - 3^n + 3*2^n - 1).
a(n) = 3*StirlingS2(n+1,4) +2*StirlingS2(n+1,3) +2*StirlingS2(n+1,2) +1.
G.f.: -(5*x^3 - 14*x^2 + 7*x - 1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jul 30 2012
EXAMPLE
a(2) = 9 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 2 {{1},{1,2}}, {{2},{1,2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 1.
MATHEMATICA
LinearRecurrence[{10, -35, 50, -24}, {1, 3, 9, 30}, 50] (* or *) Table[(1/2)*(4^n - 3^n + 3*2^n - 1), {n, 0, 50}] (* G. C. Greubel, May 30 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ross La Haye, Jan 12 2008
STATUS
approved