login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134053
Column 0 of matrix 8th power of triangle A134049; a(n) = [A134049^8](n,0) = A134049(n+3,3)/8^n.
6
1, 8, 136, 6232, 854848, 373259224, 540477342400, 2672052251004112, 46088422295844824512, 2819594595499446574537112, 619804662273405542773923781504, 494669890490702036481614523776214128, 1445689562032160359098054773761542867676352, 15582205179106128515694061249394708070061006521840, 623164384826393004269624677225320058520632702496162024576, 92950754406669433360560292231532867334028809841256765779355298464, 51944751631411703759398930923077536382840396924192243346470672357124333952
OFFSET
0,2
LINKS
EXAMPLE
Triangle T=A134049 has the following properties:
(1) [T^(2^m)](n,k) = T(n+m,k+m)/(2^m)^(n-k) for m>=0; and
(2) [T^( 1/2^(n-1) )](n,k) = (2^k)^(n-k) for n>=k>=0.
PROG
(PARI) {a(n)=local(M=Mat(1), L, R); for(i=1, n+3, L=sum(j=1, #M, -(M^0-M)^j/j); M=sum(j=0, #L, (L/2^(#L-1))^j/j!); R=matrix(#M+1, #M+1, r, c, if(r>=c, if(r<=#M, M[r, c], 2^((c-1)*(#M+1-c))))); M=R^(2^(#R-2)) ); M[n+4, 4]/8^n}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A134049; columns: A134050, A134051, A134052; A134054 (row sums).
Sequence in context: A238465 A049211 A024283 * A136472 A145404 A101388
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2007
STATUS
approved