login
A134021
Length of n in balanced ternary representation.
22
1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
0,3
COMMENTS
Shifted variant of A064099.
a(n) = A134022(n) + A134023(n) + A134024(n);
0 <= a(n) - A081604(n) <= 1;
a(A134025(n))=A081604(A134025(n)); a(A134026(n))=A081604(A134026(n))+1;
a(A134027(n)) = a(n); a(ABS(A134028(n))) <= a(n);
a(n) = A064099(n-1) for n>1.
n = Sum(A059095(A134421(n)-2-k)*3^k: 0<=k<a(n)), for n>0. - Reinhard Zumkeller, Oct 25 2007
a(n) = A005812(n) + A134023(n).
REFERENCES
D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, Vol 2, pp 173-175.
LINKS
Wikipedia, Balanced Ternary
FORMULA
For n>0: a(n) = ceiling(log(2*n+1)/log(3)).
EXAMPLE
100=1*3^4+1*3^3-1*3^2+0*3^1+1*3^0: a(100)=|++-0+|=5;
200=1*3^5-1*3^4+1*3^3+1*3^2+1*3^1-1*3^0: a(200)=|+-+++-|=6;
300=1*3^5+1*3^4-1*3^3+0*3^2+1*3^1+0*3^0: a(300)=|++-0+0|=6.
PROG
(Python)
def a(n):
if n==0: return 1
s=0
x=0
while n>0:
x=n%3
n=n//3
if x==2:
x=-1
n+=1
s+=1
return s
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 07 2017
CROSSREFS
Sequence in context: A269024 A244160 A064099 * A330558 A237657 A244317
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Oct 19 2007
STATUS
approved