OFFSET
1,2
COMMENTS
It appears this sequence gives the positive integers m such that the sum of the first m Fibonacci numbers divides their product. For example, if n=2 and m=a(2)=6, we have the sum 1+1+2+3+5+8=20 which clearly divides the corresponding product 480. See A175553 for the analogous sequence when using the triangular numbers. Sum_{k=1..n} Fibonacci(k) divides Product_{k=1..n} Fibonacci(k). - John W. Layman, Jul 10 2010
FORMULA
Inverse binomial transform of A003261: (1, 7, 23, 63, 159, 383, ...).
Binomial transform of [1, 5, -1, 1, -1, 1, ...].
"1" followed by 2 * [3, 5, 7, 9, 11, ...].
O.g.f.: x*(1+4x-x^2)/(1-x)^2. a(n) = 4n-2, n > 1. - R. J. Mathar, Jun 08 2008
1/(1+1/(6+1/(10+1/(14+1/(...(continued fraction)))))) = (e-1)/2 with e = 2.718281...- Philippe Deléham, Mar 09 2013
EXAMPLE
a(4) = 14 = (1, 3, 3, 1) dot (1, 5, -1, 1) = (1, 15, -3, 1).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 19 2007
EXTENSIONS
More terms from R. J. Mathar, Jun 08 2008
STATUS
approved