login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133653
A007318^(-1) * A003261.
3
1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154
OFFSET
1,2
COMMENTS
It appears this sequence gives the positive integers m such that the sum of the first m Fibonacci numbers divides their product. For example, if n=2 and m=a(2)=6, we have the sum 1+1+2+3+5+8=20 which clearly divides the corresponding product 480. See A175553 for the analogous sequence when using the triangular numbers. Sum_{k=1..n} Fibonacci(k) divides Product_{k=1..n} Fibonacci(k). - John W. Layman, Jul 10 2010
FORMULA
Inverse binomial transform of A003261: (1, 7, 23, 63, 159, 383, ...).
Binomial transform of [1, 5, -1, 1, -1, 1, ...].
"1" followed by 2 * [3, 5, 7, 9, 11, ...].
O.g.f.: x*(1+4x-x^2)/(1-x)^2. a(n) = 4n-2, n > 1. - R. J. Mathar, Jun 08 2008
1/(1+1/(6+1/(10+1/(14+1/(...(continued fraction)))))) = (e-1)/2 with e = 2.718281...- Philippe Deléham, Mar 09 2013
EXAMPLE
a(4) = 14 = (1, 3, 3, 1) dot (1, 5, -1, 1) = (1, 15, -3, 1).
CROSSREFS
Essentially the same as A130824, A113127, A111284, A073760, A016825.
Sequence in context: A115036 A332766 A315169 * A073760 A315170 A315171
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 19 2007
EXTENSIONS
More terms from R. J. Mathar, Jun 08 2008
STATUS
approved