login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133631
a(n) = a(n-1) - 4*a(n-2), a(0)=1, a(1)=2.
1
1, 2, -2, -10, -2, 38, 46, -106, -290, 134, 1294, 758, -4418, -7450, 10222, 40022, -866, -160954, -157490, 486326, 1116286, -829018, -5294162, -1978090, 19198558, 27110918, -49683314, -158126986, 40606270, 673114214, 510689134, -2181767722, -4224524258
OFFSET
0,2
FORMULA
G.f.: (1+x)/(1-x+4*x^2).
a(n) = Sum_{k=0..n} A133607(n,k)*2^k. - Philippe Deléham, Dec 29 2007
a(n) = 2^n*U(n, 1/4) + 2^(n-1)*U(n-1, 1/4) = A106853(n) + A106853(n-1) where U is the Chebyshev polynomial of the 2nd kind. - Michael Somos, Oct 24 2023
EXAMPLE
G.f. = 1 + 2*x - 2*x^2 - 10*x^3 - 2*x^4 + 38*x^5 + 46*x^6 - 106*x^7 + ... - Michael Somos, Oct 24 2023
MATHEMATICA
a[ n_] := 2^n * ChebyshevU[n, 1/4] + 2^(n-1) * ChebyshevU[n-1, 1/4]; (* Michael Somos, Oct 24 2023 *)
PROG
(PARI) {a(n) = 2^n*polchebyshev(n, 2, 1/4) + 2^(n-1)*polchebyshev(n-1, 2, 1/4)}; /* Michael Somos, Oct 24 2023 */
CROSSREFS
Sequence in context: A297793 A351177 A319880 * A137450 A344998 A321415
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Dec 28 2007
STATUS
approved