login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1, a(n) = a(n-1) + (p-1)*p^(n/2-1) if n is even, otherwise a(n) = a(n-1) + p^((n-1)/2), where p=5.
6

%I #19 Dec 12 2020 19:03:29

%S 1,5,10,30,55,155,280,780,1405,3905,7030,19530,35155,97655,175780,

%T 488280,878905,2441405,4394530,12207030,21972655,61035155,109863280,

%U 305175780,549316405,1525878905,2746582030,7629394530,13732910155,38146972655,68664550780

%N a(1)=1, a(n) = a(n-1) + (p-1)*p^(n/2-1) if n is even, otherwise a(n) = a(n-1) + p^((n-1)/2), where p=5.

%C Partial sums of A133632.

%H Colin Barker, <a href="/A133629/b133629.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-5).

%F a(n) = Sum_{k=1..n} A133632(k).

%F The following formulas are given for a general natural parameter p > 1 (p=5 for this sequence).

%F G.f.: x(1+(p-1)x)/((1-px^2)(1-x)).

%F a(n) = (p/(p-1))*(p^(n/2)-1) if n is even, otherwise a(n)=(p/(p-1))*((2p-1)*p^((n-3)/2)-1).

%F a(n) = (p/(p-1))*(p^floor(n/2) + p^floor((n-1)/2) - p^floor((n-2)/2)-1).

%F a(n) = p^floor(n/2) + (p^floor((n+1)/2)-p)/(p-1).

%F a(n) = A132669(a(n+1)) - 1.

%F a(n) = A132669(a(n-1)+1) for n > 0.

%F A132669(a(n)) = a(n-1)+1 for n > 0.

%F From _Colin Barker_, Nov 25 2016: (Start)

%F a(n) = 5*(5^(n/2) - 1)/4 for n even.

%F a(n) = (9*5^(n/2-1/2) - 5)/4 for n odd.

%F a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) for n > 3.

%F G.f.: x*(1 + 4*x) / ((1 - x) * (1 - 5*x^2)).

%F (End)

%p a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=5*a[n-2]+5 od: seq(a[n], n=1..29); # _Zerinvary Lajos_, Mar 17 2008

%o (PARI) Vec(x*(1 + 4*x) / ((1 - x) * (1 - 5*x^2)) + O(x^40)) \\ _Colin Barker_, Nov 25 2016

%Y Sequences with similar recurrence rules: A027383 (p=2), A087503 (p=3), A133628 (p=4).

%Y Related sequences: A132666, A132667, A132668, A132669.

%Y Other related sequences for different p: A016116 (p=2), A038754 (p=3), A084221 (p=4), A133632 (p=5).

%K nonn,easy

%O 1,2

%A _Hieronymus Fischer_, Sep 19 2007