Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:45:32
%S 1,4,8,20,36,84,148,340,596,1364,2388,5460,9556,21844,38228,87380,
%T 152916,349524,611668,1398100,2446676,5592404,9786708,22369620,
%U 39146836,89478484,156587348,357913940,626349396,1431655764,2505397588
%N a(1)=1, a(n) = a(n-1) + (p-1)*p^(n/2-1) if n is even, else a(n) = a(n-1) + p^((n-1)/2), where p=4.
%C This is essentially a duplicate of A097164. - _R. J. Mathar_, Jun 08 2008
%C Partial sums of A084221.
%H Vincenzo Librandi, <a href="/A133628/b133628.txt">Table of n, a(n) for n = 1..3000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1, 4, -4).
%F a(n) = Sum_{k=1..n} A084221(k).
%F G.f.: x*(1+3*x)/((1-4*x^2)*(1-x)).
%F a(n) = (4/3)*(4^(n/2)-1) if n is even, otherwise a(n) = (4/3)*(7*4^((n-3)/2)-1).
%F a(n) = (4/3)*(4^floor(n/2) + 4^floor((n-1)/2) - 4^floor((n-2)/2) - 1).
%F a(n) = 4^floor(n/2) + 4^floor((n+1)/2)/3 - 4/3.
%F a(n) = A132668(a(n+1)) - 1.
%F a(n) = A132668(a(n-1) + 1) for n > 0.
%F A132668(a(n)) = a(n-1) + 1 for n > 0.
%p a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=4*a[n-2]+4 od: seq(a[n], n=1..31); # _Zerinvary Lajos_, Mar 17 2008
%t nxt[{n_,a_}]:={n+1,If[OddQ[n],a+3*4^((n+1)/2-1),a+4^(n/2)]}; Transpose[ NestList[ nxt,{1,1},30]][[2]] (* _Harvey P. Dale_, Mar 31 2013 *)
%o (Magma) [4^Floor(n/2)+4^Floor((n+1)/2)/3-4/3: n in [1..40]]; // _Vincenzo Librandi_, Aug 17 2011
%o (PARI) vector(40, n, (3*4^floor(n/2) + 4^floor((n+1)/2) - 4)/3) \\ _G. C. Greubel_, Nov 08 2018
%Y Sequences with similar recurrence rules: A027383(p=2), A087503(p=3), A133629(p=5).
%Y See A133629 for general formulas with respect to the recurrence rule parameter p.
%Y Related sequences: A132666, A132667, A132668, A132669.
%Y Other related sequences for different p: A016116(p=2), A038754(p=3), A084221(p=4), A133632(p=5).
%K nonn
%O 1,2
%A _Hieronymus Fischer_, Sep 19 2007