login
A133120
Sum of all n-digit Bell numbers.
1
9, 67, 1080, 4140, 21147, 794545, 4213597, 27644437, 190899322, 1382958545, 93345011951, 682076806159, 5832742205057, 51724158235372, 474869816156751, 4506715738447323, 44152005855084346, 445958869294805289, 4638590332229999353, 49631246523618756274, 545717047936059989389, 6160539404599934652455
OFFSET
1,1
COMMENTS
For n >= 11, there is at most one Bell number with n digits. - Robert Israel, Mar 17 2019
LINKS
Eric Weisstein's World of Mathematics, Bell Number
EXAMPLE
Sum of all 1-digit Bell numbers is 9.
Sum of all 2-digit Bell numbers is 67.
Sum of all 3-digit Bell numbers is 1080.
MAPLE
N:= 80: # for a(1)..a(N)
A:= Vector(N):
for n from 0 do
b:= combinat:-bell(n);
k:= ilog10(b)+1;
if k > N then break fi;
A[k]:= A[k]+b;
od:
convert(A, list): # Robert Israel, Mar 17 2019
CROSSREFS
Cf. A000110.
Sequence in context: A155592 A002051 A231192 * A194650 A048742 A121633
KEYWORD
nonn,base
AUTHOR
Parthasarathy Nambi, Sep 18 2007
EXTENSIONS
More terms from Robert Israel, Mar 17 2019
STATUS
approved