login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132977
Expansion of q^(-1/3) * (eta(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)))^2 in powers of q.
8
1, 2, 5, 12, 26, 50, 92, 168, 295, 496, 818, 1332, 2126, 3324, 5126, 7824, 11793, 17548, 25857, 37788, 54734, 78578, 111968, 158496, 222842, 311224, 432095, 596676, 819504, 1119624, 1522282, 2060448, 2776514, 3725294, 4978142, 6626988, 8789042
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * (chi(q) * chi(q^3))^2 * c(q^2) / (3 * b(q^2)) in powers of q where chi() is a Ramanujan theta function and b(), c() are cubic AGM functions.
Euler transform of period 12 sequence [ 2, 2, 4, 4, 2, -4, 2, 4, 4, 2, 2, 0, ...].
Expansion of (chi^3(q^3) / chi(q))^2 * (psi(-q^3) / psi(-q))^4 in powers of q where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/3) * (eta(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)))^2 in powers of q.
G.f. = A112173(x) * A128758(x^2).
G.f.: (Product_{k>0} (1-x^(6*k))^4 / ( (1-x^k) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(12*k)) ))^2.
a(n) = A132975(3*n + 1).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 26*x^4 + 50*x^5 + 92*x^6 + 168*x^7 + ...
G.f. = q + 2*q^4 + 5*q^7 + 12*q^10 + 26*q^13 + 50*q^16 + 92*q^19 + ...
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1-x^(6*k))^4 / ( (1-x^k) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(12*k)) ))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
a[ n_] := SeriesCoefficient[(QPochhammer[ x^6]^4 / (QPochhammer[ x] QPochhammer[ x^3] QPochhammer[ x^4] QPochhammer[ x^12]))^2, {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 07 2007
EXTENSIONS
Edited by R. J. Mathar and N. J. A. Sloane, Sep 01 2009
STATUS
approved