login
A132813
Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.
13
1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
OFFSET
0,3
COMMENTS
Row sums = A001700: (1, 3, 10, 35, 126, ...).
Also a(n,k) = binomial(n-1, k-1)*binomial(n, k-1), related to Narayana polynomials (see Sulanke reference). - Roger L. Bagula, Apr 09 2008
h-vector for cluster complex associated to the root system B_n. See p. 8, Athanasiadis and C. Savvidou. - Tom Copeland, Oct 19 2014
LINKS
N. Alexeev, A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv preprint arXiv:1204.0362 [math.CO], 2012.
Robert. A. Sulanke, Counting Lattice Paths by Narayana Polynomials Electronic J. Combinatorics 7, No. 1, R40, 1-9, 2000.
FORMULA
T(n,k) = (k+1)*binomial(n+1,k+1)*binomial(n+1,k)/(n+1), n>=k>=0.
From Roger L. Bagula, May 14 2010: (Start)
p(x,n) = (1 - x)^(2*n)*Sum[Binomial[k + n - 1, k]*Binomial[n + k, k]*x^k, {k, 0, Infinity}];
p(x,n) = (1 - x)^(2n) HypergeometricPFQ[{n, 1 + n}, {1}, x];
t(n,m) = coefficients(p(x,n)) (End)
T(n,k) = binomial(n,k) * binomial(n+1,k). - Reinhard Zumkeller, Apr 04 2014
These are the coefficients of the polynomials hypergeom([1-n,-n],[1],x). - Peter Luschny, Nov 26 2014
G.f.: A(x,y) = A281260(x,y)/(1-A281260(x,y))/x. - Vladimir Kruchinin, Oct 10 2020
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 6, 3;
1, 12, 18, 4;
1, 20, 60, 40, 5;
1, 30, 150, 200, 75, 6;
1, 42, 315, 700, 525, 126, 7,
...
MAPLE
P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n, x)), x) od; # Peter Luschny, Nov 26 2014
MATHEMATICA
A[n_, k_]=Binomial[n-1, k-1]*Binomial[n, k-1]; Table[Table[A[n, k], {k, 1, n}], {n, 1, 11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *)
P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
PROG
(PARI) tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", "); ); ); } \\ Michel Marcus, Feb 12 2014
(Haskell)
a132813 n k = a132813_tabl !! n !! k
a132813_row n = a132813_tabl !! n
a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl
-- Reinhard Zumkeller, Apr 04 2014
(Magma) /* triangle */ [[(k+1)*Binomial(n+1, k+1)*Binomial(n+1, k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
(GAP) Flat(List([0..10], n->List([0..n], k->(k+1)*Binomial(n+1, k+1)*Binomial(n+1, k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
CROSSREFS
Family of polynomials (see A062145): A008459 (c=1), this sequence (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Cf. A007318, A000894 (central terms), A103371 (mirrored).
Sequence in context: A350292 A060556 A222969 * A034898 A059300 A321331
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 01 2007
STATUS
approved