login
A132702
Decimal expansion of 12/Pi.
16
3, 8, 1, 9, 7, 1, 8, 6, 3, 4, 2, 0, 5, 4, 8, 8, 0, 5, 8, 4, 5, 3, 2, 1, 0, 3, 2, 0, 9, 4, 0, 3, 4, 4, 6, 8, 8, 8, 2, 7, 0, 3, 1, 4, 9, 7, 7, 7, 0, 9, 5, 4, 7, 6, 9, 9, 4, 4, 0, 1, 6, 2, 5, 7, 4, 1, 3, 5, 2, 3, 1, 4, 3, 2, 2, 1, 4, 3, 6, 8, 4, 2, 1, 6, 2, 7, 3, 1, 2, 6, 6, 3, 9, 0, 0, 7, 4, 0, 6, 2, 9, 4, 5, 7, 4
OFFSET
1,1
COMMENTS
From Bernard Schott, Apr 17 2022: (Start)
For any triangle ABC, (see Crux Mathematicorum):
(b+c)/A + (c+a)/B + (a+b)/C >= (12/Pi) * s,
b*c/(A*(s-a)) + c*a/(B*(s-b)) + a*b/(C*(s-c)) >= (12/Pi) * s,
where (A,B,C) are the angles (measured in radians), (a,b,c) the side lengths of this triangle and s the semiperimeter.
Equality stands iff triangle ABC is equilateral. (End)
LINKS
S. Arslanagić and D. M. Milošević, Problem 1827, Crux Mathematicorum, Vol. 22, No. 1 (1996), p. 36.
FORMULA
Equals 2*A132696 = 4*A089491 = 6*A060294. -R. J. Mathar, Jul 29 2024
EXAMPLE
3.819718634...
MAPLE
Digits:=100; evalf(12/Pi); # Wesley Ivan Hurt, Mar 26 2014
MATHEMATICA
RealDigits[N[12/Pi, 6! ]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2009 *)
PROG
(PARI) 12/Pi \\ Charles R Greathouse IV, Dec 31 2011
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Omar E. Pol, Aug 26 2007
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009
STATUS
approved