login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1, a(n) = 2*a(n-1) if the minimal positive integer not yet in the sequence is greater than a(n-1), else a(n) = a(n-1)-1.
24

%I #25 Aug 09 2017 23:07:39

%S 1,2,4,3,6,5,10,9,8,7,14,13,12,11,22,21,20,19,18,17,16,15,30,29,28,27,

%T 26,25,24,23,46,45,44,43,42,41,40,39,38,37,36,35,34,33,32,31,62,61,60,

%U 59,58,57,56,55,54,53,52,51,50,49,48,47,94,93,92,91,90,89,88,87,86,85

%N a(1)=1, a(n) = 2*a(n-1) if the minimal positive integer not yet in the sequence is greater than a(n-1), else a(n) = a(n-1)-1.

%C Also: a(1)=1, a(n) = maximal positive number < a(n-1) not yet in the sequence, if it exists, else a(n) = 2*a(n-1).

%C Also: a(1)=1, a(n) = a(n-1)-1, if a(n-1) - 1 > 0 and has not been encountered so far, else a(n) = 2*a(n-1).

%C A reordering of the natural numbers. The sequence is self-inverse in that a(a(n)) = n.

%C Almost certainly a duplicate of A132340. - _R. J. Mathar_, Jun 12 2008

%H Reinhard Zumkeller, <a href="/A132666/b132666.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F G.f.: g(x) = (x(1-2x)/(1-x) + 2x^2*f'(x^3) + 3/4*(f'(x)-2x-1))/(1-x) where f(x) = Sum_{k>=0} x^(2^k) and f'(z) = derivative of f(x) at x = z.

%F a(n) = 5*2^(r/2) - 3 - n, if both r and s are even, else a(n) = 7*2^((s-1)/2) - 3 - n, where r = ceiling(2*log_2((n+2)/3)) and s = ceiling(2*log_2((n+2)/2) - 1).

%F a(n) = 2^floor(1 + (k+1)/2) + 3*2^floor(k/2) - 3 - n, where k=r, if r is even, else k=s (with respect to r and s above; formally, k = ((r+s) + (r-s)*(-1)^r)/2).

%F a(n) = A027383(m) + A027383(m+1) + 1 - n, where m:=max{ k | A027383(k) < n }.

%F a(A027383(n) + 1) = A027383(n+1).

%F a(A027383(n)) = A027383(n-1) + 1 for n > 0.

%t max = 72; f[x_] := Sum[x^(2^k), {k, 0, Ceiling[ Log[2, max]]}]; g[x_] = (x (1 - 2x)/(1 - x) + 2x^2*f'[x^3] + 3/4*(f'[x] - 2x - 1))/(1 - x); Drop[ CoefficientList[ Series[ g[x], {x, 0, max}], x], 1] (* _Jean-François Alcover_, Dec 01 2011 *)

%o (Haskell)

%o import Data.List (delete)

%o a132666 n = a132666_list !! (n-1)

%o a132666_list = 1 : f 1 [2..] where

%o f z xs = y : f y (delete y xs) where

%o y | head xs > z = 2 * z

%o | otherwise = z - 1

%o -- _Reinhard Zumkeller_, Sep 17 2001

%Y For formulas concerning a general parameter p (with respect to the recurrence rule ... a(n)=p*a(n-1) ...) see A132674.

%Y For p=3 to p=10 see A132667 through A132674.

%Y For a similar recurrence rule concerning Fibonacci (A000045) and Lucas numbers (A000032) see A132664 and A132665.

%Y Cf. A027383.

%K nonn,nice

%O 1,2

%A _Hieronymus Fischer_, Aug 24 2007, Sep 15 2007