login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132664
a(1)=1, a(2)=2, a(n) = a(n-1) + n if the minimal positive integer not yet in the sequence is greater than a(n-1), else a(n) = a(n-1) - 1.
7
1, 2, 5, 4, 3, 9, 8, 7, 6, 16, 15, 14, 13, 12, 11, 10, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48
OFFSET
1,2
COMMENTS
Also: a(1)=1, a(2)=2, a(n) = maximal positive number < a(n-1) not yet in the sequence, if it exists, else a(n) = a(n-1) + n.
Also: a(1)=1, a(2)=2, a(n) = a(n-1) - 1, if a(n-1) - 1 > 0 and has not been encountered so far, else a(n) = a(n-1) + n.
A permutation of the positive integers. The sequence is self-inverse, in that a(a(n)) = n.
FORMULA
G.f.: g(x) = (L'(x) - x^2 - 1/(1-x))/(1-x) where L(x) = Sum_{k>=0} x^Lucas(k) and Lucas(k) = A000032(k). L(x) is the g.f. of the Lucas indicator sequence (see A102460) and L'(x) = derivative of L(x).
a(n) = Lucas(Lucas_inverse(n+1)+2) - n - 3 = A000032(A130241(n+1) + 2) - n - 3 for n > 1.
a(n) = A000032(floor(log_phi(n + 3/2)) + 2) - n - 3 for n > 1, where phi = (1 + sqrt(5))/2 is the golden ratio.
CROSSREFS
For an analog concerning Fibonacci numbers see A132665.
See A132666-A132674 for sequences with a similar recurrence rule.
Sequence in context: A115303 A266403 A266415 * A072029 A309734 A309668
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Sep 15 2007
STATUS
approved