login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132583
a(n) = n 2's sandwiched between two 1's.
7
11, 121, 1221, 12221, 122221, 1222221, 12222221, 122222221, 1222222221, 12222222221, 122222222221, 1222222222221, 12222222222221, 122222222222221, 1222222222222221, 12222222222222221, 122222222222222221, 1222222222222222221, 12222222222222222221, 122222222222222222221
OFFSET
0,1
COMMENTS
Also, positive numbers each of whose digits indicates its number of adjacent digits (digits on the ends are adjacent to only one while others are adjacent to 2). - Eric Fox, Jul 19 2022
FORMULA
a(0) = 11; a(n) = 10*a(n-1) + 11. - Jonathan Vos Post, Nov 24 2007 [corrected by Jon E. Schoenfield, Jan 28 2018]
O.g.f.: 11/((-1+x)*(-1+10*x)) = -(110/9)/(-1+10*x) + (11/9)/(-1+x). - R. J. Mathar, Nov 28 2007
E.g.f.: 11*exp(x)*(10*exp(9*x) - 1)/9. - Stefano Spezia, Sep 15 2023
MAPLE
g:=(1+z)/((1-z)*(1-10*z)): gser:=series(g, z=0, 43): seq((coeff(gser, z, n))-1, n=1..24); # Zerinvary Lajos, Feb 25 2009
MATHEMATICA
NestList[10#+11&, 11, 20] (* or *) LinearRecurrence[{11, -10}, {11, 121}, 20] (* Harvey P. Dale, Sep 24 2012 *)
PROG
(Magma) [20*(10^n-1)/9+10^(n+1)+1: n in [0..25]]; // Vincenzo Librandi, Aug 10 2011
CROSSREFS
Sequence in context: A106473 A125315 A223676 * A007907 A171285 A216132
KEYWORD
nonn,base,easy
AUTHOR
Paul Curtz, Nov 21 2007
STATUS
approved