OFFSET
1,2
COMMENTS
Subsequences are A017281 and A053742 representing last digits 1 and 5. Generators for the subsequences representing last digits 2, 3, 4, 6, 7, 8 and 9 are, in that order, the terms 12+20i, 63+90i, 64+80i, 36+180i, 147+490i, 128+320i, 729+810i, where i=0,1,2,... - R. J. Mathar, Nov 13 2007
This is a 10-automatic sequence. - Charles R Greathouse IV, Dec 28 2011
LINKS
T. D. Noe and Christian N. K. Anderson, Table of n, a(n) for n = 1..10000 (first 1000 values from T. D. Noe)
FORMULA
Numbers k such that fp[k / (k mod 10)] = 0.
a(n) ~ 6350400*n/1241929 = 5.113...*n. - Charles R Greathouse IV, Dec 28 2011
EXAMPLE
147 belongs to the sequence because 147/7^2 = 3.
MAPLE
isA132359 := proc(n) local ldig ; ldig := n mod 10 ; if ldig <> 0 and n mod (ldig^2) = 0 then true ; else false ; fi ; end: for n from 1 to 400 do if isA132359(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Nov 13 2007
a:=proc(n) local nn: nn:=convert(n, base, 10): if 0 < nn[1] and `mod`(n, nn[1]^2) =0 then n else end if end proc: seq(a(n), n=1..250); # Emeric Deutsch, Nov 15 2007
MATHEMATICA
Select[Range[250], IntegerDigits[ # ][[ -1]] > 0 && Mod[ #, IntegerDigits[ # ][[ -1]]^2] == 0 &] (* Stefan Steinerberger, Nov 12 2007 *)
dsldQ[n_]:=Module[{lidnsq=Last[IntegerDigits[n]]^2}, lidnsq!=0 && Divisible[n, lidnsq]]; Select[Range[300], dsldQ] (* Harvey P. Dale, May 03 2011 *)
PROG
(PARI) is(n)=n%(n%10)^2==0 \\ Charles R Greathouse IV, Dec 28 2011
(R) which(sapply(1:500, function(x) isint(x/(x%%10)^2))) # Christian N. K. Anderson, May 04 2013
(Python)
def ok(n): return n%10 > 0 and n%(n%10)**2 == 0
print([k for k in range(273) if ok(k)]) # Michael S. Branicky, Jul 03 2022
CROSSREFS
KEYWORD
base,easy,nonn,nice
AUTHOR
Jonathan Vos Post, Nov 08 2007
EXTENSIONS
STATUS
approved