OFFSET
1,2
COMMENTS
L5(1) = 1, L5(2) = 1, L5(3) = 1, L5(4) = 201538000 L5(1)~l5(4) are Number of reduced Latin 5-dimensional hypercubes (Latin polyhedra) of order n. Latin 5-dimensional hypercubes (Latin polyhedra) are a generalization of Latin cube and Latin square. a(4) and L5(4) computed on Dec 01 2002.
REFERENCES
T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese).
B. D. McKay and I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math. 22, (2008) 719-736.
Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
FORMULA
Equals n*(n-1)!^5*L5(n), where L5(n) is number of reduced Latin 5-dimensional hypercubes (Latin polyhedra) of order n (cf. A132205).
EXAMPLE
4*(4-1)!^5*L5(4) = 6268637952000 where L5(4) = 201538000
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Toru Ito (to-itou(AT)ipa.go.jp), Nov 06 2007
EXTENSIONS
a(5) from Ian Wanless, May 01 2008
Edited by N. J. A. Sloane, Dec 05 2009 at the suggestion of Vladeta Jovovic
STATUS
approved