login
a(n)= -3a(n-1) -3a(n-2)-2a(n-3), a(0)=1, a(1)=-2, a(2)=2.
3

%I #13 Sep 22 2024 04:33:38

%S 1,-2,2,-2,4,-10,22,-44,86,-170,340,-682,1366,-2732,5462,-10922,21844,

%T -43690,87382,-174764,349526,-699050,1398100,-2796202,5592406,

%U -11184812,22369622,-44739242,89478484,-178956970,357913942,-715827884,1431655766,-2863311530

%N a(n)= -3a(n-1) -3a(n-2)-2a(n-3), a(0)=1, a(1)=-2, a(2)=2.

%H Harvey P. Dale, <a href="/A131562/b131562.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-3,-3,-2).

%F |v(n)| = 2^n+A130772(n); 2*|v(n)|-|v(n+1)|= 2*A057079(n), where v(n)=a(n+1)-a(n) are first differences.

%F O.g.f.: (1+x-x^2)/((1+2*x)*(1+x+x^2)). a(n)=(-1)^n*A130707(n). - _R. J. Mathar_, Jul 07 2008

%F Binomial transform yields A130151 without the first two terms. - _R. J. Mathar_, Jul 07 2008

%t LinearRecurrence[{-3,-3,-2},{1,-2,2},40] (* _Harvey P. Dale_, Jan 11 2017 *)

%Y Cf. A130707.

%K sign,easy

%O 0,2

%A _Paul Curtz_, Aug 27 2007

%E Edited by _R. J. Mathar_, Jul 07 2008