login
A131439
Inverse binomial transform of A131438 (assuming zero offset in both sequences)
3
1, 7, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182
OFFSET
1,2
COMMENTS
Conjecture: The sequence appears to be (1, 7, ...) followed by 4k + 14; k=0,1,2,...; thus: (1, 7, 14, 18, 22, 26, ...).
Inverse binomial transform of this sequence = (1, 6, 1, -4, 7, -10, 13, -16, 19, -22, ...).
FORMULA
a(n) = 2*a(n-1) - a(n-2) for n>4. G.f.: -x*(x+1)*(3*x^2-4*x-1) / (x-1)^2. [Colin Barker, Jan 06 2013]
EXAMPLE
(1, 3, 3, 1) dot (1, 7, 14, 18) = 82 = A131438(4).
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 11 2007
STATUS
approved