login
A131245
A046854^2 as an infinite lower triangular matrix.
3
1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 8, 9, 7, 2, 1, 13, 19, 13, 9, 2, 1, 21, 33, 34, 17, 11, 2, 1, 34, 65, 61, 53, 21, 13, 2, 1, 55, 111, 141, 97, 76, 25, 15, 2, 1, 89, 210, 248, 257, 141, 103, 29, 17, 2, 1, 144, 355, 534, 461, 421, 193, 134, 33, 19, 2, 1
OFFSET
0,2
COMMENTS
Left border = Fibonacci numbers.
Row sums = A131246.
A131243 is the square of the reflection triangle to A046854: A065941.
Row sums of A131243 = (1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, ...).
EXAMPLE
First few rows of the triangle:
1;
2, 1;
3, 2, 1;
5, 5, 2, 1;
8, 9, 7, 2, 1;
13, 19, 13, 9, 2, 1;
21, 33, 34, 17, 11, 2, 1;
...
PROG
(PARI) T(n, k) = binomial((n+k)\2, k);
row(n) = my(m=matrix(n+1, n+1, i, j, T(i-1, j-1))); vector(n+1, i, (m^2)[n+1, i]);
lista(nn) = for (n=0, nn, my(v=row(n)); for (i=1, #v, print1(v[i], ", ")); ); \\ Michel Marcus, Feb 28 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 22 2007
EXTENSIONS
More terms from Michel Marcus, Feb 28 2022
STATUS
approved