login
A131073
a(1)=2. a(n) = a(n-1) + (number of terms, from among terms a(1) through a(n-1), which are prime).
4
2, 3, 5, 8, 11, 15, 19, 24, 29, 35, 41, 48, 55, 62, 69, 76, 83, 91, 99, 107, 116, 125, 134, 143, 152, 161, 170, 179, 189, 199, 210, 221, 232, 243, 254, 265, 276, 287, 298, 309, 320, 331, 343, 355, 367, 380, 393, 406, 419, 433, 448, 463, 479, 496, 513, 530, 547
OFFSET
1,1
COMMENTS
By Dirichlet's Theorem, there are an infinite number of primes in this sequence.
LINKS
FORMULA
a(n+1) = a(n) + Sum_{k=1..n} A010051(a(k)). - Reinhard Zumkeller, Nov 15 2011
EXAMPLE
There are 5 primes (2,3,5,11,19) among the first 7 terms of the sequence. So a(8) = a(7) + 5 = 24.
MATHEMATICA
f[lst_] := Append[lst, Last@lst + Length@ Select[lst, PrimeQ@# &]]; Nest[f, {2}, 56] (* Robert G. Wilson v, Jul 02 2007 *)
PROG
(Haskell)
a131073 n = a131073_list !! (n-1)
a131073_list = 2 : f 2 1 where
f x c = y : f y (c + a010051 y) where y = x + c
-- Reinhard Zumkeller, Nov 15 2011
CROSSREFS
Sequence in context: A325515 A126097 A024611 * A062485 A175143 A137179
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 13 2007
EXTENSIONS
More terms from Robert G. Wilson v, Jul 02 2007
STATUS
approved