login
A130980
G.f.: 16/(7 + 9*sqrt(1 - 32*x)).
6
1, 9, 153, 3177, 73017, 1785609, 45543897, 1197639081, 32231934585, 883404542025, 24570973169433, 691759954058985, 19674867844155321, 564462038150345097, 16315646312285498457, 474680922491822688297
OFFSET
0,2
COMMENTS
Number of walks of length 2n on the 9-regular tree beginning and ending at some fixed vertex. Hankel transform is A135320. - Philippe Deléham, Feb 25 2009
LINKS
FORMULA
a(n) = Sum_{k=0..n} A039599(n,k)*8^(n-k). - Philippe Deléham, Aug 25 2007
a(n) ~ 72/49*32^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
D-finite with recurrence: n*a(n) +(-113*n+48)*a(n-1) +1296*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 20 2020
MATHEMATICA
CoefficientList[Series[16/(7+9*Sqrt[1-32*x]), {x, 0, 30}], x] (* Harvey P. Dale, Feb 21 2013 *)
PROG
(PARI) Vec(16/(7 + 9*sqrt(1-32*x)) + O(x^50)) \\ G. C. Greubel, Jan 28 2017
CROSSREFS
Column k=9 of A183135.
Sequence in context: A246641 A169958 A012017 * A133309 A228713 A151835
KEYWORD
nonn
AUTHOR
Philippe Deléham, Aug 23 2007
EXTENSIONS
More terms from Olivier Gérard, Sep 22 2007
STATUS
approved