OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+727, y).
Corresponding values y of solutions (x, y) are in A159893.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (731+54*sqrt(2))/727 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 0.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
FORMULA
a(n) = 6*a(n-3)-a(n-6)+1454 for n > 6; a(1)=0, a(2)=56, a(3)=1925, a(4)=2181, a(5)=2465, a(6)=13056.
G.f.: x*(56+1869*x+256*x^2-52*x^3-623*x^4-52*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 727*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 56, 1925, 2181, 2465, 13056, 14540}, 40] (* or *) RecurrenceTable[{a[1]==0, a[2]==56, a[3]==1925, a[4]==2181, a[5] == 2465, a[6] == 13056, a[n] ==6a[n-3]-a[n-6]+1454}, a, {n, 40}] (* Harvey P. Dale, Jan 16 2013 *)
PROG
(PARI) {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1454*n+528529), print1(n, ", ")))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 20 2007
EXTENSIONS
Edited and one term added by Klaus Brockhaus, Apr 30 2009
STATUS
approved