login
A130564
Member k=5 of a family of generalized Catalan numbers.
27
1, 5, 40, 385, 4095, 46376, 548340, 6690585, 83615350, 1064887395, 13770292256, 180320238280, 2386316821325, 31864803599700, 428798445360120, 5809228810425801, 79168272296871450, 1084567603590147950
OFFSET
1,2
COMMENTS
The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A000108, A006013, A006632, A118971 for k=1,2,3,4, respectively (but the offset there is 0).
The members of the C(k,n) family for positive k are: A000012 (powers of 1), A000108, A001764, A002293, A002294, A002295, A002296, A007556, A062994, for k=1..9.
The ordinary generating functions for the k-family {c(k, n+1)}_{n>=0}, k >= 1, are G(k, x) = hypergeometric(Aseq(k+1), Bseq(k), ((k+1)^(k+1)/k^k)*x), with Aseq(k+1) = [a(k)_1,..., a(k)_{k+1}], where a(k)_j = (2*k - (j-1))/(k+1), and Bseq(k) = [b(k)_1, ..., b(k)_k], where b(k)_j = (2*k - (j-1))/k. The e.g.f. has an extra 1 in the B-section, which leads to a cancellation with the A-section 1 term. Thanks to Dixon J. Jones for asking for the general formulas. - Wolfdieter Lang, Feb 04 2024
The o.g.f. of {C(k, n)}_{n>=0} is in the Graham-Knuth-Patashnik book denoted as B_k(z) on pp. 200, 349 (2nd ed. 1994, pp. 200, 363). - Wolfdieter Lang, Mar 07 2024
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1994, pp. 200, 363.
LINKS
K. Kobayashi, H. Morita and M. Hoshi, Coding of ordered trees, Proceedings, IEEE International Symposium on Information Theory, ISIT 2000, Sorrento, Italy, Jun 25 2000.
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=5.
G.f.: inverse series of y*(1-y)^5.
a(n) = (5/6)*binomial(6*n,n)/(6*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4]/5,(6^6/5^5)*x)).
E.g.f.: (5/6)*(1 - hypergeom([-1, 1, 2, 3, 4]/6, [1, 2, 3, 4, 5]/5,(6^6/5^5)*x)). (End)
D-finite with recurrence 5*n*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-7)*(3*n-1)*(2*n-1)*(3*n-2)*(6*n-5)*a(n-1)=0. - R. J. Mathar, May 07 2021
MATHEMATICA
Rest@ CoefficientList[InverseSeries[Series[y (1 - y)^5, {y, 0, 18}], x], x] (* Michael De Vlieger, Oct 13 2019 *)
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 13 2007
STATUS
approved