login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130335
Smallest k > 0 such that gcd(n*(n+1)/2, (n+k)*(n+k+1)/2) = 1.
4
1, 2, 7, 2, 2, 4, 2, 2, 4, 2, 2, 10, 2, 2, 7, 2, 2, 4, 2, 2, 4, 2, 2, 13, 2, 2, 10, 2, 2, 7, 2, 2, 4, 2, 2, 10, 2, 2, 7, 2, 2, 4, 2, 2, 7, 2, 2, 10, 2, 2, 7, 2, 2, 4, 2, 2, 4, 2, 2, 13, 2, 2, 10, 2, 2, 4, 2, 2, 4, 2, 2, 10, 2, 2, 7, 2, 2, 4, 2, 2, 4, 2, 2, 22, 2, 2, 7, 2, 2, 16, 2, 2, 4, 2, 2, 10, 2, 2, 7, 2
OFFSET
1,2
COMMENTS
First occurrence of 3k+1, k=0.. or 0 if unknown, limit = 2^31: 1, 6, 3, 12, 24, 90, 231, 84, 792, 0, 195, 3432, 780, 0, 3255, 6075, 73644, 51482970, 0, 924, 183540, 0, 45219, 0, 509124, 3842375445, 29259, 71484, 0, 0, 0, 2311539, 238547880, 0, 55380135, 893907420, 23303784, 0, 0, 208260975, 0, 0, 1744264599, 0, 0, 0, 1487657079, 665710275, 0, 0, 1963994955, 0, 319589424, 0, 0, 0, 4181294964, 0, 0, 383229924, ..., . - Robert G. Wilson v, Jun 03 2007
LINKS
FORMULA
a(n) = Min{k>0: A050873(A000217(n+k),A000217(n))=1);
a(n) = A130334(n) - n;
a(n) > 1 for n>1; a(n) > 2 iff n mod 3 = 0: a(A001651(n))=2, a(A008585(n)) > 2 for n > 1.
a(n) == 1 (mod 3) if a(n) != 2. - Robert G. Wilson v, Jun 03 2007
MATHEMATICA
f[n_] := Block[{k = If[ n == 1 || Mod[n, 3] == 0, 1, 2]}, While[ GCD[n(n + 1)/2, (n + k)(n + k + 1)/2] != 1, k += 3 ]; k]; Array[f, 100] (* Robert G. Wilson v, Jun 03 2007 *)
PROG
(Python)
from math import gcd
def A130335(n):
k, Tn, Tm = 1, n*(n+1)//2, (n+1)*(n+2)//2
while gcd(Tn, Tm) != 1:
k += 1
Tm += k+n
return k # Chai Wah Wu, Sep 16 2021
(PARI) a(n) = my(k=1); while (gcd(n*(n+1)/2, (n+k)*(n+k+1)/2) != 1, k++); k;
CROSSREFS
Cf. A130334.
See A130336 and A130337 for record values and where they occur.
Sequence in context: A082072 A082066 A179931 * A347236 A073246 A021790
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 28 2007
STATUS
approved