login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest m>n such that the m-th and n-th triangular numbers are coprime.
5

%I #13 Sep 16 2021 13:31:19

%S 2,4,10,6,7,10,9,10,13,12,13,22,15,16,22,18,19,22,21,22,25,24,25,37,

%T 27,28,37,30,31,37,33,34,37,36,37,46,39,40,46,42,43,46,45,46,52,48,49,

%U 58,51,52,58,54,55,58,57,58,61,60,61,73,63,64,73,66,67,70,69,70,73,72,73

%N Smallest m>n such that the m-th and n-th triangular numbers are coprime.

%H Reinhard Zumkeller, <a href="/A130334/b130334.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RelativelyPrime.html">Relatively Prime</a>

%F a(n) > n+1 for n>1; a(n) > n+2 for n with n mod 3 = 0;

%F a(n) = n + A130335(n).

%o (Python)

%o from math import gcd

%o def A130334(n):

%o k, Tn, Tm = n+1, n*(n+1)//2, (n+1)*(n+2)//2

%o while gcd(Tn,Tm) != 1:

%o k += 1

%o Tm += k

%o return k # _Chai Wah Wu_, Sep 16 2021

%Y Cf. A000217, A026741, A109007, A130335.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, May 28 2007