login
A130136
Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 0110's (n>=0, 0<=k<=floor((n-1)/3)). A Fibonacci binary word is a binary word having no 00 subword.
1
1, 2, 3, 5, 7, 1, 11, 2, 16, 5, 25, 8, 1, 37, 16, 2, 57, 26, 6, 85, 48, 10, 1, 130, 78, 23, 2, 195, 136, 39, 7, 297, 220, 80, 12, 1, 447, 371, 136, 31, 2, 679, 598, 258, 54, 8, 1024, 987, 437, 121, 14, 1, 1553, 1584, 790, 212, 40, 2, 2345, 2576, 1332, 432, 71, 9, 3553
OFFSET
0,2
COMMENTS
Row n has 1+floor((n-1)/3) terms. Row sums are the Fibonacci numbers (A000045).
FORMULA
G.f.: G(t,z) = (1+z+(1-t)z^3)/(1-z-z^2+(1-t)z^3-(1-t)z^4).
T(n,0) = A130137(n).
Sum_{k>=0} k*T(n,k) = A001629(n-2) (n>=2).
EXAMPLE
T(8,2)=2 because we have 01101101 and 10110110.
Triangle starts:
1;
2;
3;
5;
7, 1;
11, 2;
16, 5;
25, 8, 1;
...
MAPLE
G:=(1+z+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3-z^4+t*z^4): Gser:=simplify(series(G, z=0, 23)): for n from 0 to 23 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 20 do seq(coeff(P[n], t, j), j=0..floor((n-1)/3)) od; # yields sequence in triangular form
MATHEMATICA
gf = (1 + z + (1-t) z^3)/(1 - z - z^2 + (1-t) z^3 - (1-t) z^4);
CoefficientList[#, t]& /@ CoefficientList[gf + O[z]^20, z] // Flatten (* Jean-François Alcover, Aug 25 2021 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 13 2007
STATUS
approved