OFFSET
0,2
COMMENTS
Row n has 1+floor((n-1)/3) terms. Row sums are the Fibonacci numbers (A000045).
FORMULA
EXAMPLE
T(8,2)=2 because we have 01101101 and 10110110.
Triangle starts:
1;
2;
3;
5;
7, 1;
11, 2;
16, 5;
25, 8, 1;
...
MAPLE
G:=(1+z+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3-z^4+t*z^4): Gser:=simplify(series(G, z=0, 23)): for n from 0 to 23 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 20 do seq(coeff(P[n], t, j), j=0..floor((n-1)/3)) od; # yields sequence in triangular form
MATHEMATICA
gf = (1 + z + (1-t) z^3)/(1 - z - z^2 + (1-t) z^3 - (1-t) z^4);
CoefficientList[#, t]& /@ CoefficientList[gf + O[z]^20, z] // Flatten (* Jean-François Alcover, Aug 25 2021 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 13 2007
STATUS
approved