login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129764
Numerator of the sum of all elements of n X n X n cubic array M[i,j,k] = 1/(i+j+k-2).
0
1, 15, 1133, 1177, 129149, 349673, 57087959, 345322023, 14272692271, 40165727117, 217549734472087, 14553241481573, 18901300532988407, 40603763694792631, 9565202506169243753, 63888449105310899
OFFSET
1,2
COMMENTS
a(n) is a 3-d analog of Wolstenholme Numbers (A001008) that are the numerators of Harmonic Numbers H(n) = Sum[ 1/i, {i,1,n} ]. n X n X n cubic array M[i,j,k] = 1/(i+j+k-2) is a 3-d analog of n X n Hilbert Matrix with elements M[i,j] = 1/(i+j-1). p divides a((p+1)/3) for prime p = {5,11,17,23,29,41,47,53,59,71,83,89,...} = A007528 Primes of form 6n-1. Sum[ Sum[ Sum[ (i+j+k-2), {i,1,n} ], {j,1,n} ], {k,1,n} ] = 1/2*n^3*(3n-1).
LINKS
Eric Weisstein, The World of Mathematics: Hilbert Matrix.
Eric Weisstein, The World of Mathematics: Harmonic Number.
FORMULA
a(n) = Numerator[ Sum[ Sum[ Sum[ 1/(i+j+k-2), {i,1,n} ], {j,1,n} ], {k,1,n} ] ].
MATHEMATICA
Table[ Numerator[ Sum[ Sum[ Sum[ 1/(i+j+k-2), {i, 1, n} ], {j, 1, n} ], {k, 1, n} ] ], {n, 1, 30} ]
CROSSREFS
Cf. A001008 = Wolstenholme numbers: numerator of harmonic number H(n)=Sum_{i=1..n} 1/i. Cf. A082687, A117731, A007528.
Sequence in context: A131313 A208346 A236329 * A027552 A212857 A266581
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 15 2007
STATUS
approved