OFFSET
0,3
COMMENTS
Contributed to OEIS on April 15, 2007 -- the 300th anniversary of the birth of Leonhard Euler.
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k>=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
EXAMPLE
L(3, chi3) = 0.8840238117500798567430579168710118077... = [0; 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 9, 4, 13, 4, ...].
MATHEMATICA
nmax = 1000; ContinuedFraction[4 Pi^3/(81 Sqrt[3]), nmax + 1]
CROSSREFS
KEYWORD
nonn,cofr,easy
AUTHOR
Stuart Clary, Apr 15 2007
STATUS
approved