OFFSET
1,2
COMMENTS
Sum of 5 consecutive squares starting with n^2 is equal to 5*(6 + 4*n + n^2) and mean is (6 + 4*n + n^2) = (n+2)^2 + 2. Hence a(n) = A067201(n+2).
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..1000
EXAMPLE
(1^2 + ... + 5^2)/5 = 11, which is prime;
(7^2 + ... + 11^2)/5 = 83, which is prime;
(13^2 + ... + 17^2)/5 = 227, which is prime.
MATHEMATICA
Select[Range[800], PrimeQ[#^2 + 4 # + 6] &] (* Bruno Berselli, Apr 17 2012 *)
PROG
(Magma) [n: n in [1..800] | IsPrime(n^2+4*n+6)]; /* or, from the second comment: */ A000217:=func<i | i*(i+1) div 2>; [n: n in [1..800] | IsPrime(A000217(n)+A000217(n+3))]; // Bruno Berselli, Apr 17 2013
(SageMath) [n for n in (1..1000) if is_prime(n^2+4*n+6)] # G. C. Greubel, Feb 04 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 12 2007
STATUS
approved