login
A129374
G.f. satisfies: A(x) = 1/(1-x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...
16
1, 1, 2, 3, 6, 8, 15, 20, 35, 48, 76, 103, 166, 221, 333, 451, 671, 894, 1303, 1730, 2479, 3288, 4615, 6086, 8502, 11142, 15299, 20034, 27285, 35514, 47937, 62168, 83259, 107650, 142929, 184090, 243207, 312041, 409210, 523709, 683261, 871239, 1130703
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = Product_{n>=1} 1/(1 - x^n)^A074206(n) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ exp((1 + 1/r) * (-Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(10*(1+r))) / ((2*Pi)^(29/50) * sqrt(1+r) * n^((6 + 5*r)/(10*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018
PROG
(PARI) {a(n)=local(A=1+x); for(i=2, n, A=1/(1-x)*prod(n=2, i, subst(A, x, x^n+x*O(x^i)))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 12 2007
STATUS
approved