login
A128959
a(n) is equal to the number of positive integers m less than or equal to 10^n such that m is not divisible by at least one of the primes 2,3 and is not divisible by at least one of the primes 5,7.
1
82, 810, 8096, 80953, 809524, 8095239, 80952382, 809523810, 8095238096, 80952380953, 809523809524, 8095238095239, 80952380952382, 809523809523810, 8095238095238096, 80952380952380953, 809523809523809524, 8095238095238095239, 80952380952380952382
OFFSET
2,1
FORMULA
a(n) = 10^n-floor(10^n/6)-floor(10^n/35)+floor(10^n/210).
From Colin Barker, Nov 17 2015: (Start)
a(n) = 11*a(n-1)-11*a(n-2)+11*a(n-3)-11*a(n-4)+11*a(n-5)-10*a(n-6) for n>7.
G.f.: -x^2*(90*x^5-89*x^4+95*x^3-88*x^2+92*x-82) / ((x-1)*(10*x-1)*(x^2-x+1)*(x^2+x+1)).
(End)
MAPLE
f := n->10^n-floor(10^n/2)-floor(10^n/35)+floor(10^n/210);
PROG
(Magma) [10^n-Floor(10^n/6)-Floor(10^n/35)+Floor(10^n/210): n in [2..20]]; // Vincenzo Librandi, Oct 02 2011
(PARI) Vec(-x^2*(90*x^5-89*x^4+95*x^3-88*x^2+92*x-82)/((x-1)*(10*x-1)*(x^2-x+1)*(x^2+x+1)) + O(x^30)) \\ Colin Barker, Nov 17 2015
CROSSREFS
Cf. A092695.
Sequence in context: A342832 A186688 A002309 * A305682 A317062 A230394
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Apr 28 2007
STATUS
approved