login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Highly abundant numbers that are not products of consecutive primes with nonincreasing exponents, i.e., that are not of the form n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2>=e_3>=...>=e_p.
3

%I #21 Jun 18 2019 18:24:05

%S 1,3,10,18,20,42,84,90,108,168,300,336,504,540,600,630,660,1008,1200,

%T 1560,1620,1980,2100,2340,2400,3024,3120,3240,3780,3960,4200,4680,

%U 5880,6120,6240,7920,8400,8820

%N Highly abundant numbers that are not products of consecutive primes with nonincreasing exponents, i.e., that are not of the form n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2>=e_3>=...>=e_p.

%C This is the subsequence of those highly abundant numbers (A002093) that have a different canonical structure to the superabundant numbers (A004394), the colossally abundant numbers (A004490), the highly composite numbers (A002182) and the superior highly composite numbers (A002201).

%H Amiram Eldar, <a href="/A128701/b128701.txt">Table of n, a(n) for n = 1..8404</a>

%H L. Alaoglu and P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1944-03.pdf">On highly composite and similar numbers</a>, Trans. Amer. Math. Soc., 56 (1944), 448-469.

%H Jeffrey C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An Elementary Problem Equivalent to the Riemann Hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001.

%H Jeffrey C. Lagarias, <a href="http://www.jstor.org/stable/2695443">An elementary problem equivalent to the Riemann hypothesis</a>, American Mathematical Monthly 109 (2002), pp. 534-543.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Highly_abundant_number">Highly Abundant Numbers</a>.

%F The highly abundant numbers (A002093) are those values of n for which sigma(n)>sigma(m) for all m<n, where sigma(n)= A000203(n).

%e As 10 is the third highly abundant number that cannot be expressed as a product of consecutive primes with nonincreasing exponents, then a(3)=10.

%t hadata1=FoldList[Max,1,Table[DivisorSigma[1,n],{n,2,10000}]]; data1=Flatten[Position[hadata1,#,1,1]&/@Union[hadata1]];primefactorlist[1]={1};primefactorlist[k_]:=First[Transpose[FactorInteger[k]]];exponentlist[1]={1};exponentlist[k_]:=Last[Transpose[FactorInteger[k]]];g[k_List]:=If[MemberQ[Table[k[[i]]<= k[[i-1]],{i,1,Length[k]}],False],False,True];h[k_]:=If[primefactorlist[k]==(Prime[ # ]&/@Range[Length[primefactorlist[k]]]),True,False];Select[data1,Or[ ! h[ # ],!g[exponentlist[ # ]]]&]

%t seq = {1}; sm = 0; Do[f = FactorInteger[n]; p = f[[;; , 1]]; e = f[[;; , 2]]; s = Times @@ ((p^(e + 1) - 1)/(p - 1)); If[s > sm, sm = s; m = Length[p]; If[p[[-1]] != Prime[m] || (m > 1 && ! AllTrue[Differences[e], # <= 0 &]), AppendTo[seq, n]]], {n, 2, 10^4}]; seq (* _Amiram Eldar_, Jun 18 2019 *)

%Y Cf. A002093, A004394, A000203, A004490, A002182, A002201, A128699, A128700, A128702.

%K nonn

%O 1,2

%A _Ant King_, Mar 28 2007