login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128519
McKay-Thompson series of class 78B for the Monster group with a(0) = -1.
3
1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 2, -1, 0, 0, 1, -2, 2, -2, 1, 0, 1, -3, 4, -3, 2, -1, 2, -4, 5, -5, 3, -2, 3, -6, 8, -7, 4, -2, 5, -9, 11, -10, 6, -4, 6, -12, 16, -14, 8, -6, 11, -17, 21, -19, 13, -10, 14, -24, 30, -26, 17, -14, 21, -31, 38, -35, 25, -20, 26, -42, 52, -46, 33, -28, 38, -56, 68, -62, 47, -38, 49, -75
OFFSET
-1,13
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * chi(-q) * chi(-q^39) / (chi(-q^3) * chi(-q^13)) in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q) * eta(q^6) * eta(q^26) * eta(q^39) / (eta(q^2) * eta(q^3) * eta(q^13) * eta(q^78)) in powers of q.
Euler transform of a period 78 sequence.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (v - u^2) * (w^2 - v) - 2*u*w * (1 + v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (78 t)) = 1 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A262950.
G.f.: (1/x) * (Product_{k>0} P(x^k))^-1 where P(x) is the 78th cyclotomic polynomial of degree 24.
a(n) = A058755(n) unless n = 0.
Convolution inverse is A262950.
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n/39)) / (2 * 39^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2018
EXAMPLE
G.f. = 1/q - 1 - q^4 + q^5 - q^6 + q^7 - q^10 + 2*q^11 - q^12 + q^15 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q]*QP[q^6]*QP[q^26]*(QP[q^39]/(QP[q^2]*QP[q^3]* QP[q^13]*QP[q^78])) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^26 + A) * eta(x^39 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^13 + A) * eta(x^78 + A)), n))};
CROSSREFS
Sequence in context: A048571 A025880 A058755 * A303979 A301573 A061670
KEYWORD
sign
AUTHOR
Michael Somos, Mar 06 2007
STATUS
approved