login
A128176
3
1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 3, 6, 7, 4, 1, 3, 9, 13, 11, 5, 1, 4, 12, 22, 24, 16, 6, 1, 4, 16, 34, 46, 40, 22, 7, 1, 5, 20, 50, 80, 86, 62, 29, 8, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
OFFSET
1,4
COMMENTS
Row Sums = A000975: (1, 2, 5, 10, 21, 42, 85, 170, ...).
From Peter Bala, Aug 14 2014: (Start)
Riordan array ( 1/((1 - x^2)*(1 - x)), x/(1 - x) ).
Let B_n be the set of length n nonzero binary words ending in an even number (possibly 0) of 0's. Then T(n,k) is the number of words in B_n having k 1's. An example is given below. (End)
LINKS
Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Part IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, Springer, Berlin, 1932. See p. 434.
FORMULA
A128174 * A007318 (Pascal's triangle), as infinite lower triangular matrices.
From Peter Bala, Aug 14 2014: (Start)
Working with a row and column offset of 0 we have T(n,k) = Sum_{i = 0..floor(n/2)} binomial(n - 2*i,k).
O.g.f.: 1/( (1 - z^2)*(1 - z*(1 + x)) ) = Sum_{n >= 0} R(n,x)*z^n = 1 + (1 + x)*z + (2 + 2*x + x^2)*z^2 + ....
The row polynomials satisfy R(n+2,x) - R(n,x) = (1 + x)^(n+1). (End)
From Hartmut F. W. Hoft, Mar 15 2017: (Start)
Using offset 0, the triangle has the Pascal Triangle recursion pattern:
T(n, 0) = 1 + floor(n/2) and T(n, n) = 1, for n >= 0;
T(n, k) = T(n-1, k-1) + T(n-1, k) for n > 0 and 0 < k < n. (End)
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
2, 2, 1;
2, 4, 3, 1;
3, 6, 7, 4, 1;
3, 9, 13, 11, 5, 1;
4, 12, 22, 24, 16, 6, 1;
4, 16, 34, 46, 40, 22, 7, 1;
...
From Peter Bala, Aug 14 2014: (Start)
Row 4: [2,4,3,1].
k Binary words in B_4 with k 1's Number
- - - - - - - - - - - - - - - - - - - - - - - - - -
1 0001, 0100 2
2 0011, 0101, 1001, 1100 4
3 0111, 1011, 1101 3
4 1111 1
- - - - - - - - - - - - - - - - - - - - - - - - - -
The infinitesimal generator matrix begins
0
1 0
1 2 0
-1 1 3 0
1 -1 1 4 0
-1 1 -1 1 5 0
...
Cf. A132440. (End)
MATHEMATICA
(* Dot product of two lower triangular matrices *)
dotRow[r_, s_, n_] := Map[Sum[r[n, k] s[k, #], {k, #, n}]&, Range[0, n]]
dotTriangle[r_, s_, n_] := Map[dotRow[r, s, #]&, Range[0, n]]
(* The pure function in the first argument computes A128174 *)
a128176[r_] := dotTriangle[If[EvenQ[#1 + #2], 1, 0]&, Binomial, r]
TableForm[a128176[7]] (* triangle *)
Flatten[a128176[9]] (* data *) (* Hartmut F. W. Hoft, Mar 15 2017 *)
T[n_, n_] := 1; T[n_, 0] := 1 + Floor[n/2]; T[n_, k_] := T[n, k] = T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 30 2017 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(sum(i=0, floor(n/2), binomial(n - 2*i, k)), ", "))) \\ G. C. Greubel, Sep 30 2017
CROSSREFS
Cf. A035317 (mirror). [Johannes W. Meijer, Jul 20 2011]
Sequence in context: A300667 A129687 A274742 * A368415 A370075 A144963
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 17 2007
STATUS
approved