login
Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^4 = 1 + A122102(k).
4

%I #25 Jun 05 2021 13:44:28

%S 1,2,3,4,5,6,8,9,10,12,15,16,20,24,27,30,32,39,40,45,48,58,60,80,88,

%T 90,96,100,120,138,168,180,207,216,240,328,342,353,360,456,470,480,

%U 496,564,591,768,840,1040,1215,1276,1355,1360,1395,1440,1600,2208,2576,2904

%N Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^4 = 1 + A122102(k).

%C a(280) > 5*10^13. - _Bruce Garner_, Jun 05 2021

%H Bruce Garner, <a href="/A128168/b128168.txt">Table of n, a(n) for n = 1..279</a> (terms 1..215 from Robert Price)

%H OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a>

%t s = 1; Do[s = s + Prime[n]^4; If[ Mod[s, n] == 0, Print[n]], {n, 17500}]

%Y Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).

%Y Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.

%Y Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.

%K nonn

%O 1,2

%A _Alexander Adamchuk_, Feb 22 2007