login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128081
Central coefficients of q in the q-analog of the odd double factorials: a(n) = [q^(n(n-1)/2)] Product_{j=1..n} (1-q^(2j-1))/(1-q).
6
1, 1, 1, 3, 15, 97, 815, 8447, 104099, 1487477, 24188525, 441170745, 8920418105, 198066401671, 4791181863221, 125421804399845, 3532750812110925, 106538929613501939, 3425126166609830467, 116938867144129019137, 4225543021235970185429, 161113285522023566327031
OFFSET
0,4
LINKS
FORMULA
a(n) ~ 3 * 2^n * n^(n - 3/2) / (sqrt(Pi) * exp(n)). - Vaclav Kotesovec, Feb 07 2023
EXAMPLE
a(n) is the central term of the q-analog of odd double factorials, in which the coefficients of q (triangle A128080) begin:
n=0: (1);
n=1: (1);
n=2: 1,(1),1;
n=3: 1,2,3,(3),3,2,1;
n=4: 1,3,6,9,12,14,(15),14,12,9,6,3,1;
n=5: 1,4,10,19,31,45,60,74,86,94,(97),94,86,74,60,45,31,19,10,4,1;
n=6: 1,5,15,34,65,110,170,244,330,424,521,614,696,760,801,(815),...;
The terms enclosed in parenthesis are initial terms of this sequence.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
end:
a:= n-> coeff(b(n), q, n*(n-1)/2):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 22 2021
MATHEMATICA
a[n_Integer] := a[n] = Coefficient[Expand@Cancel@FunctionExpand[-q QPochhammer[1/q, q^2, n + 1]/(1 - q)^(n + 1)], q, n (n - 1)/2];
Table[a[n], {n, 0, 21}] (* Vladimir Reshetnikov, Sep 22 2021 *)
PROG
(PARI) a(n)=if(n==0, 1, polcoeff(prod(k=1, n, (1-q^(2*k-1))/(1-q)), n*(n-1)/2, q))
CROSSREFS
Cf. A001147 ((2n-1)!!); A128080 (triangle), A128082 (diagonal).
Sequence in context: A132437 A331610 A331618 * A370676 A186264 A140286
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 14 2007
STATUS
approved