login
A126935
Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(n,3).
2
0, -12, -24, -30, -24, 0, 48, 126, 240, 396, 600, 858, 1176, 1560, 2016, 2550, 3168, 3876, 4680, 5586, 6600, 7728, 8976, 10350, 11856, 13500, 15288, 17226, 19320, 21576, 24000, 26598, 29376, 32340, 35496, 38850, 42408, 46176, 50160, 54366, 58800, 63468, 68376, 73530
OFFSET
0,2
REFERENCES
V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
FORMULA
a(n) = n*(n+2)*(n-5).
From G. C. Greubel, Jan 29 2020: (Start)
G.f.: (-6)*x*(2 - 4*x + x^2)/(1-x)^4.
E.g.f.: x*(-12 + x^2)*exp(x). (End)
MAPLE
seq( n*(n+2)*(n-5), n=0..50); # G. C. Greubel, Jan 29 2020
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[n, 3], {n, 0, 50}] (* G. C. Greubel, Jan 29 2020 *)
PROG
(PARI) vector(50, n, my(m=n-1); m*(m+2)*(m-5) ) \\ G. C. Greubel, Jan 29 2020
(Magma) [n*(n+2)*(n-5): n in [0..50]]; // G. C. Greubel, Jan 29 2020
(Sage) [n*(n+2)*(n-5) for n in (0..50)] # G. C. Greubel, Jan 29 2020
CROSSREFS
A row of A105937.
Sequence in context: A361155 A372549 A108902 * A333918 A334665 A333945
KEYWORD
sign,easy
AUTHOR
Vincent v.d. Noort, Mar 21 2007
STATUS
approved