OFFSET
1,2
REFERENCES
Adolf Hildebrand, On the number of prime factors of an integer. Ramanujan revisited (Urbana-Champaign, Ill., 1987), 167 - 185, Academic Press, Boston, MA, 1988.
Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 205 - 211.
LINKS
Jonathan Vos Post & Robert G. Wilson v, Table of n, a(n) for n = 1..1330
Jonathan Vos Post & Robert G. Wilson v, Regular Triangle of A126279 for the first 52 rows, with some holes.
Eric Weisstein's World of Mathematics, Semiprime.
Eric Weisstein's World of Mathematics, Almost Prime.
EXAMPLE
Triangle begins:
1
2 1
4 2 1
6 6 2 1
11 10 7 2 1
18 22 13 7 2 1
31 42 30 14 7 2 1
54 82 60 34 15 7 2 1
97 157 125 71 36 15 7 2 1
172 304 256 152 77 37 15 7 2 1
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[ n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[m, 2^n], {n, 16}, {m, n}] // Flatten
CROSSREFS
KEYWORD
AUTHOR
Jonathan Vos Post & Robert G. Wilson v, Dec 22 2006
STATUS
approved