login
A126275
Moment of inertia of all magic squares of order n.
4
5, 60, 340, 1300, 3885, 9800, 21840, 44280, 83325, 147620, 248820, 402220, 627445, 949200, 1398080, 2011440, 2834325, 3920460, 5333300, 7147140, 9448285, 12336280, 15925200, 20345000, 25742925, 32284980, 40157460, 49568540, 60749925, 73958560, 89478400
OFFSET
2,1
LINKS
Peter Loly, The Invariance of the Moment of Inertia of Magic Squares, Mathematical Gazette, Vol. 88, No. 511 (March 2004), 151-153, JSTOR:3621372.
Ivars Peterson, Magic Square Physics, Science News online, Jul 01, 2006; Vol. 170, No. 1.
FORMULA
a(n) = (n^2 * (n^4 - 1))/12.
G.f.: -5*x^2*(x+1)*(x^2+4*x+1) / (x-1)^7. - Colin Barker, Dec 10 2012
a(n) = Sum_{i=0..n^2-1} (k+i)^2 - (k*n + A027480(n-1))^2. - Charlie Marion, May 08 2021
MATHEMATICA
Array[(#^2*(#^4 - 1))/12 &, 31, 2] (* or *)
Drop[CoefficientList[Series[-5 x^2*(x + 1) (x^2 + 4 x + 1)/(x - 1)^7, {x, 0, 32}], x], 2] (* Michael De Vlieger, Apr 13 2021 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {5, 60, 340, 1300, 3885, 9800, 21840}, 40] (* Harvey P. Dale, Apr 03 2023 *)
PROG
(PARI) a(n) = (n^2 * (n^4 - 1))/12 \\ Felix Fröhlich, May 31 2021
(PARI) Vec(-5*x^2*(x+1)*(x^2+4*x+1)/(x-1)^7 + O(x^30)) \\ Felix Fröhlich, May 31 2021
CROSSREFS
Cf. A027480.
Sequence in context: A289724 A188269 A100906 * A059602 A290747 A212700
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 23 2006
EXTENSIONS
More terms from Colin Barker, Dec 10 2012
STATUS
approved