login
A126241
Dropping times in the 3n+1 problem (or the Collatz problem). Let T(n):=n/2 if n is even, (3n+1)/2 otherwise (A014682). Let a(n) be the smallest integer k such that T^(k)(n)<n, where T^(k) is the k-th iterate, or infinity otherwise; a(n) is called the dropping time of n.
14
0, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 2, 1, 7, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 59, 1, 2, 1, 56, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 5, 1, 2, 1, 54, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 7, 1, 2, 1, 54, 1, 2, 1, 4, 1, 2, 1, 51, 1, 2, 1, 5, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 45, 1, 2, 1, 8, 1, 2, 1, 4
OFFSET
1,3
COMMENTS
Also called "stopping times", although that term is usually reserved for A006666.
From K. Spage, Oct 22 2009, corrected Aug 21 2014: (Start)
Congruency relationship: For n>1 and m>1, all m congruent to n mod 2^(a(n)) have a dropping time equal to a(n).
By refining the definition of the dropping time to "starting with x=n, iterate x until (abs(x) <= abs(n))" the above congruency relationship holds for all nonnegative values of n and all positive or negative values of m including zero.
By this refined definition, a(1)=2 rather than the usual zero set by convention. All other values of positive a(n) remain unchanged. (End)
Terras defines a coefficient stopping time (definition 1.5) tau(n) = d which is the smallest d for which 3^u/2^d < 1 where u is the number of tripling steps among the first d steps starting from n. Clearly tau(n) <= a(n), and Terras conjectures (conjecture 2.9) that tau(n) = a(n) for n>=2. - Olivier Rozier, May 13 2024
REFERENCES
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. See p. 33.
LINKS
J. C. Lagarias, The 3x+1 Problem: An Annotated Bibliography (1963-2000)., arXiv:math/0309224 [math.NT], (cit. 2007/03/08).
R. Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976) 241-252, with definition 0.1 chi(n) = a(n).
FORMULA
a(n) = ceiling(A102419(n)/(1+log(2)/log(3))). - K. Spage, Aug 22 2014
EXAMPLE
s(15) = 7, since the trajectory {T^(k)(15)} (k=1,2,3,...) equals 23,35,53,80,40,20,10.
MATHEMATICA
Collatz2[n_] := If[n<2, {}, Rest[NestWhileList[If[EvenQ[#], #/2, (3 # + 1)/2] &, n, # >= n &]]]; Table[Length[Collatz2[n]], {n, 1, 1000}]
CROSSREFS
See A074473, which is the main entry for dropping times.
Records: A060412, A060413.
Cf. A020914 (allowable dropping times). - K. Spage, Aug 22 2014
Sequence in context: A187025 A074695 A069098 * A353515 A374972 A019777
KEYWORD
nonn
AUTHOR
Christof Menzel (christof.menzel(AT)hs-niederrhein.de), Mar 08 2007
EXTENSIONS
Broken link fixed by K. Spage, Oct 22 2009
STATUS
approved