Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 22 2019 08:21:56
%S 1252216,1754536,2166136,2362360,6224890,7626136,7851256,9581320,
%T 12480160,12494856,13324311,15218560,15422536,19028296,29180466,
%U 36716680,37542190,40682824,45131416,45495352,56523810,67195305,71570296,80524665,89740456,93182440,101304490
%N Smaller member of an augmented infinitary amicable pair.
%C A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
%H Amiram Eldar, <a href="/A126174/b126174.txt">Table of n, a(n) for n = 1..276</a>
%H Jan Munch Pedersen, <a href="http://62.198.248.44/aliquot/tables.htm">Tables of Aliquot Cycles</a>.
%F The values of m for which isigma(m)=isigma(n)=m+n-1, where m<n and isigma(n) is given by A049417(n).
%e a(3)=2166136 because 2166136 is the smaller element of the third augmented infinitary amicable pair, (2166136,2580105).
%t ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], _?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k_] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[First[data[[k]]], {k, 1, Length[data]}]
%t fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] + 1; If[k > n && infs[k] == n - 1, AppendTo[s, n]], {n, 2, 10^9}]; s (* _Amiram Eldar_, Jan 20 2019 *)
%Y Cf. A126169, A049417, A126168, A037445, A126170, A126171, A126173, A126175, A126176.
%K hard,nonn
%O 1,1
%A _Ant King_, Dec 23 2006
%E a(9)-a(27) from _Amiram Eldar_, Jan 20 2019