login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126099
Number of 3-indecomposable (connected) graphs on n nodes.
4
1, 1, 1, 2, 6, 21, 7, 10, 10, 15, 15, 21, 21, 28, 28, 36, 36, 45, 45, 55, 55, 66, 66, 78, 78, 91, 91, 105, 105, 120, 120, 136, 136, 153, 153, 171, 171, 190, 190, 210, 210, 231, 231, 253, 253, 276, 276, 300, 300, 325, 325, 351, 351, 378, 378, 406, 406, 435, 435, 465, 465, 496
OFFSET
1,4
COMMENTS
See A124593 for definition.
FORMULA
G.f.: x/((1-x)*(1-x^2)^2) + 1 - x^3 + 3*x^4 + 15*x^5 + x^6.
From Colin Barker, May 27 2016: (Start)
a(n) = (-1+(-1)^n+2*(1+(-1)^n)*n+2*n^2)/16 for n>7.
a(n) = (n^2+2*n)/8 for n>7 and even.
a(n) = (n^2-1)/8 for n>7 and odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>12.
G.f.: x*(1-2*x^2+x^3+5*x^4+13*x^5-22*x^6-26*x^7+32*x^8+14*x^9-14*x^10-x^11) / ((1-x)^3*(1+x)^2).
(End)
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 1, 1, 2, 6, 21, 7, 10, 10, 15, 15, 21, 21}, 70] (* Harvey P. Dale, Sep 18 2019 *)
PROG
(PARI) Vec(x*(1-2*x^2+x^3+5*x^4+13*x^5-22*x^6-26*x^7+32*x^8+14*x^9-14*x^10-x^11) / ((1-x)^3*(1+x)^2) + O(x^50)) \\ Colin Barker, May 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved