login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126089
Expansion of e.g.f.: (1-2*x)*sqrt(1-4*x).
1
1, -4, 4, 0, -48, -960, -20160, -483840, -13305600, -415134720, -14529715200, -564583219200, -24135932620800, -1126343522304000, -56992982228582400, -3108708121559040000, -181859425111203840000, -11359219476176732160000, -754576722346025779200000
OFFSET
0,2
FORMULA
a(n) ~ -2^(2*n-3/2)*n^(n-1)/exp(n). - Vaclav Kotesovec, Jun 02 2013
D-finite with recurrence: a(n) -4*n*a(n-1) +12*(2*n-7)*a(n-2)=0. - R. J. Mathar, Jan 24 2020
Conjecture D-finite with recurrence: (-n+4)*a(n) +2*(2*n-5)*(n-3)*a(n-1)=0. - R. J. Mathar, Jan 24 2020
MATHEMATICA
CoefficientList[Series[(1-2*x)*Sqrt[1-4*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
PROG
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-2*x)*Sqrt(1-4*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Jan 25 2020
(PARI) seq(n)={Vec(serlaplace((1-2*x)*sqrt(1-4*x + O(x*x^n))))} \\ Andrew Howroyd, Jan 25 2020
CROSSREFS
Sequence in context: A369018 A030045 A371049 * A111848 A204384 A102412
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Mar 22 2007
STATUS
approved