login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125146
Primes p such that (p + nextprime + p) and also (p + previousprime + p) are primes.
3
5, 13, 17, 103, 197, 227, 787, 823, 911, 919, 1153, 1409, 1487, 1723, 2087, 2647, 2767, 2999, 3001, 3389, 6089, 6781, 6827, 7877, 9463, 10391, 10789, 11117, 11447, 11971, 13523, 13537, 13711, 13807, 14087, 14489, 16063, 18191, 21059, 23371, 25717
OFFSET
1,1
COMMENTS
First pairs of two successive primes in the sequence are {13, 17}, {911, 919}, {2999, 3001} (twin primes!), {13523, 13537}, {52543, 52553}.
First case of three successive primes is {78059, 78079, 78101}.
LINKS
EXAMPLE
13 is a term because 13 + 17 + 13 = 43 and 13 + 11 + 13 = 37 are primes.
MAPLE
Primes:= select(isprime, [2, seq(i, i=3..10^5, 2)]):
Primes[select(t -> isprime(2*Primes[t]+Primes[t-1]) and isprime(2*Primes[t]+Primes[t+1]), [$2..nops(Primes)-1])]; # Robert Israel, Mar 15 2018
MATHEMATICA
pQ[n_]:=PrimeQ[2n+NextPrime[n]]&&PrimeQ[2n+NextPrime[n, -1]]; Select[ Prime[Range[2, 3000]], pQ] (* Harvey P. Dale, Apr 25 2011 *)
CROSSREFS
Sequence in context: A376396 A195549 A294132 * A051900 A275800 A347475
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 11 2007
STATUS
approved