login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125144
Increments in the number of decimal digits of 4^n.
1
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0
OFFSET
1,1
COMMENTS
This sequence is not periodic because log(4)/log(10) is an irrational number. - T. D. Noe, Jan 25 2007
LINKS
FORMULA
a(n)=Number_of_digits{4^(n+1)}-Number_of digits{4^(n)} with n>=0 and where "Number_of digits" is a hypothetical function giving the number of digits of the argument.
EXAMPLE
a(1)=1 because 4^(1+1)=16 (two digits) 4^1=4 (one digit) and the difference is 1.
a(2)=0 because 4^(2+1)=64 (two digits) 4^(2)=16 (two digits) and the difference is 0.
MAPLE
P:=proc(n) local i, j, k, w, old; k:=4; for i from 1 by 1 to n do j:=k^i; w:=0; while j>0 do w:=w+1; j:=trunc(j/10); od; if i>1 then print(w-old); old:=w; else old:=w; fi; od; end: P(1000);
# alternative:
H:= [seq(ilog10(4^i), i=1..1001)]:
H[2..-1]-H[1..-2]; # Robert Israel, Jul 12 2018
MATHEMATICA
Differences[IntegerLength[4^Range[100]]] (* Paolo Xausa, Jun 08 2024 *)
PROG
(PARI) a(n) = #digits(4^(n+1)) - #digits(4^n); \\ Michel Marcus, Jul 12 2018
CROSSREFS
First differences of A210434.
Sequence in context: A128174 A096055 A260456 * A115198 A005614 A341753
KEYWORD
easy,nonn,base
AUTHOR
EXTENSIONS
Offset corrected by Robert Israel, Jul 11 2018
STATUS
approved