login
A125092
Triangle read by rows: T(n,k) = (k+1)^2*binomial(n,k) (0 <= k <= n).
2
1, 1, 4, 1, 8, 9, 1, 12, 27, 16, 1, 16, 54, 64, 25, 1, 20, 90, 160, 125, 36, 1, 24, 135, 320, 375, 216, 49, 1, 28, 189, 560, 875, 756, 343, 64, 1, 32, 252, 896, 1750, 2016, 1372, 512, 81, 1, 36, 324, 1344, 3150, 4536, 4116, 2304, 729, 100, 1, 40, 405, 1920, 5250, 9072
OFFSET
0,3
COMMENTS
Binomial transform of the infinite diagonal matrix (1,4,9,16,...).
Sum of entries in row n = (n+1)*(n+4)*2^(n-2) = A001793(n+1).
LINKS
EXAMPLE
First few rows of the triangle:
1;
1, 4;
1, 8, 9;
1, 12, 27, 16;
1, 16, 54, 64, 25;
1, 20, 90, 160, 125, 36;
...
MAPLE
T:=(n, k)->(k+1)^2*binomial(n, k): for n from 0 to 11 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
Table[(k+1)^2 Binomial[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Feb 20 2023 *)
CROSSREFS
Cf. A001793.
Sequence in context: A128414 A192014 A019699 * A122914 A245566 A016689
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 19 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved