OFFSET
0,3
COMMENTS
Binomial transform of the infinite diagonal matrix (1,4,9,16,...).
Sum of entries in row n = (n+1)*(n+4)*2^(n-2) = A001793(n+1).
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
EXAMPLE
First few rows of the triangle:
1;
1, 4;
1, 8, 9;
1, 12, 27, 16;
1, 16, 54, 64, 25;
1, 20, 90, 160, 125, 36;
...
MAPLE
T:=(n, k)->(k+1)^2*binomial(n, k): for n from 0 to 11 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
Table[(k+1)^2 Binomial[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Feb 20 2023 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 19 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved