OFFSET
1,6
LINKS
FORMULA
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = A191558(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = Sum_{p prime} p * (P(p) - P(p+1)) - Sum_{k>=2} P(k) = 0.20171354082810650948..., where P(s) is the prime zeta function. (End)
EXAMPLE
720 has the prime-factorization of 2^4 *3^2 *5^1. Two of these exponents, 4 and 1, aren't primes. So a(720) = 4 + 1 = 5.
MATHEMATICA
f[n_] := Plus @@ Select[Last /@ FactorInteger[n], ! PrimeQ[ # ] &]; Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
PROG
(PARI) A125071(n) = vecsum(apply(e -> if(isprime(e), 0, e), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Nov 18 2006
EXTENSIONS
Extended by Ray Chandler, Nov 19 2006
STATUS
approved