login
A124995
a(n) is the constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k)^3.
4
1, 0, 0, 62, 332, 0, 0, 80006, 531524, 0, 0, 173607568, 1226700784, 0, 0, 455805857978, 3321800235936, 0, 0, 1325490660318216, 9841000101286172, 0, 0, 4108826483323392880, 30886378286619335592, 0, 0, 13306426381421174346512, 100916492010297213463566
OFFSET
0,4
COMMENTS
From Robert Israel, Nov 09 2017: (Start)
a(n) is the coefficient of x^(3*n*(n+1)/2) in Product_{k=0..n} (x^(2*k)+1)^3.
a(n) = 0 if n == 1 or 2 (mod 4). (End)
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1114 (terms < 10^1000)
Ovidiu Bagdasar and Dorin Andrica, New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
MAPLE
seq(coeff(mul(x^k+1/x^k, k=1..n)^3, x, 0), n=0..50); # Robert Israel, Nov 09 2017
PROG
(PARI) a(n) = polcoef(prod(k=1, n, (x^k + 1/x^k)^3), 0); \\ Michel Marcus, Jan 07 2021
CROSSREFS
For constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k)^q for other values of q see A063865, A047653, A124996.
Sequence in context: A100160 A223072 A010746 * A020191 A212834 A202959
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 12 2008
STATUS
approved