login
A124374
Primes of the form !(k + 1)/2 = Sum_{i=0..k} i!/2.
1
2, 5, 17, 2957, 23117, 204557, 2018957, 4578979328975537786697650470157, 12572230784049013026617689884981971446439568309146114097251787122217783800812199225999909965168264460210470157
OFFSET
1,1
COMMENTS
Sum_{i=0..k} i! = k! + !k = A003422(k+1), where !k is left factorial !k = Sum_{i=0..k-1} i! = A003422(k). Left factorials are even for k > 1. Corresponding numbers k such that Sum_{i=0..k} i!/2 = A003422(k+1)/2 is prime are listed in A124375(n) = {2, 3, 4, 7, 8, 9, 10, 29, 75, 162, 270, 272, 353, ...}.
LINKS
Eric Weisstein's World of Mathematics, Left Factorial.
FORMULA
a(n) = A003422(A124375(k) + 1)/2.
MATHEMATICA
f=0; Do[f=f+n!; If[PrimeQ[f/2], Print[{n, f/2}]], {n, 0, 353}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Oct 28 2006
STATUS
approved